EEL 4746 Fall 2015

Department of Electrical and Computer Engineering

EEL 4746 – MICROCOMPUTERS I Fall 2015

Instructor	:	Atoussa Tehrani
Office Hours	:	Monday 5 PM – 7 PM
Office	:	EC 3910
Phone	:	(305)348.2683
Class Time	:	Monday and Wednesday: 7:50 PM – 9:05 PM
Classroom	:	EC1115
Email	:	<u>tehranifiu@gmail.com</u>

Catalog Description:

RAM, ROM, and CPU architecture. Instruction set. Timing sequence. Subroutines. Interrupts. Peripherals. Applications. System design. (3 Credits)

Prerequisites: EEL 4709C Computer Design Corequisite: EEL 4746L

Textbook:

Yifeng Zhu, *Embedded Systems with ARM® Cortex-M3 Microcontrollers in Assembly Language and C*, First edition, ISBN: 978-0-9826926-2-2, 2014

Reference books:

Joseph Yiu, *The definitive guide to ARM*® *Cortex*®-*M3 and Cortex*®-*M4 Processors*, Third edition, ISBN-13: 978-0-12-408082-9, 2014

Joseph Yiu, The definitive guide to ARM® Cortex®-M0, ISBN: 978-0-12-385477-3, 2011

Jonathan W. Valvano, *Real-Time Interfacing to ARM® CortexTM-M Microcontrollers*, Volume 2 Third edition, ISBN-13: 978-1463590154, 2013

Learning Outcomes:

- 1. Extend student knowledge towards the understanding of software, hardware, and compatibility issues of high performance ARM microprocessors.
- 2. The student can learn a sophisticated new instruction set in concert with the architecture of 32-bit ARM microprocessors.
- 3. Learn about interfacing capabilities of the ARM Cortex-M microprocessors.
- 4. Exploit more of the programming aspects as they relate to the different hardware components.

Page | 1

EEL 4746 Fall 2015

- 5. Learn both hardware aspects along with existing software about Memory design, DMA design, A/D and D/A converters, Interrupts, and I/Os, all in relation to the ARM 32-bit microprocessors.
- 6. Expose the students to laboratory experiments that are based on a complete development board centered around the 32-bit ARM family microprocessor.
- 7. Allow the student to learn about the hardware and software tradeoffs in digital design.

Topics Covered:

- 1. Historical Background: Historical progression of ARM processor designs, processor classifications, features and levels of complexity.
- 2. Architecture: Programmer's Model of the ARM 32-bit Microprocessor: Registers, memory space and data organization, user and exception modes of operations.
- 3. Program execution mechanism and runtime memory image of ARM Cortex-M3.
- 4. Instruction Set: Assembly Language, memory access, logic, arithmetic, shift operations, bit-field processing, program flow control, saturation operation, stack usage, sleep mode related instructions and assembler directives.
- 5. Memory System: memory map, memory endianness, data alignment and unaligned data access support.
- 6. Generic Purpose I/O and principles of interfacing of Cortex-M microcontroller with input/output devices. GPIO alternate functions programming.
- 7. Subroutines, call process and passing parameters.
- 8. Exceptions and Interrupts: Exception handling, Interrupt inputs and pending behavior, NVIC for interrupt control, priority level, special registers for exceptions or interrupt masking.
- 9. Serial communication protocols, USART, I2C, and SPI.
- 10. Analog to digital, digital to analog converters and direct memory access.
- 11. Low Power and System Control Features, Sleep modes, Wake-up conditions, WFI, WFE instructions.
- 12. General-purpose timers and timers programming.
- 13. Debugging tools: Debug and Trace features, debug architecture, components and operation.
- 14. Writing C program for ARM, software flow, data types, inputs, outputs and peripherals access, CMSIS.

Relationship of course to program outcomes

In the course EEE 4746 student will have to show

- (a) an ability to apply knowledge of mathematics, science and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function in multi-disciplinary teams (through lab experiments)
- (e) an ability to identify, formulate and solve engineering problems (homework and lab experiments)
- (g) an ability to communicate effectively (through project reports)
- (j) a knowledge of contemporary issues (in microprocessor technology)
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice (through hardware-software integration and implementation)

Page | 2

EEL 4746 Fall 2015

Grading Scale:		University's Code of Academic Integrity http://academic.fiu.edu/academic_misconduct.html		
А	92-100	"Florida International University is a community dedicated to		
A-	90-92	generating and imparting knowledge through excellent teaching		
B+	88-90	and research, the rigorous and respectful exchange of ideas, and		
В	82-88	community service. All students should respect the right of		
B-	80-82	others to have an equitable opportunity to learn and honestly to		
C+	78-80	demonstrate the quality of their learning. Therefore, all students		
С	72-78	are expected to adhere to a standard of academic conduct, which demonstrates respect for themselves, their fellow students, and		
C-	70-72			
D+	68-70	the educational mission of the University. All students are		
D	62-68	deemed by the University to understand that if they are found		
D-	60-62	responsible for academic misconduct, they will be subject to the		
F	<60	Academic Misconduct procedures and sanctions, as outlined in the Student Handbook."		

Department Regulations Concerning Incomplete Grades

An incomplete grade is a temporary symbol given at the discretion of the instructor for work not completed because of serious interruption not caused by the student's own negligence. To qualify for an Incomplete, a student:

- 1. Must contact the instructor and request incomplete grade before or during missed portion of class.
- 2. Must be passing the course prior to that part of the course that is not completed.
- 3. Must make up the incomplete work through the instructor of the course.
- 4. All missed work must be finished before last two weeks of the following term.

Evaluation Criteria

Category	Weight
Homework Assignments	10%
Programming Assignments	20%
Mid-term Exam	25%
Final Exam	25%
Programming project	20%
Total	100%

Wk	Date	EEL4746 Weekly Topic Fall 2015	Due Assignment
-	8/24/15	Keil uVision and STM32 L1 Discovery board Introduction to ARM processors	
	8/26/15	ARM Architecture	
2	8/31/15	ARM Memory system	HW1
	9/2/15	See a Program Running, Chapter 1	
	9/7/15	Labor day holiday (University closed)	
	9/9/15	ARM Instruction Set Architecture, Chapter 3	HW2
4	9/14/15	ARM Instruction Set Architecture, Chapter 3	HW3, P. Assign. 1
	9/16/15	Writing Assembly for ARM, Arithmetic and Logic, Chapt. 4	
-	9/21/15	Writing Assembly for ARM, Load and Store, Chapter 5	HW4, P. Assign 2
	9/23/15	GPIO Chapter 14	
6	9/28/15	Branch and Conditional Execution, Chapter 6	HW5, P. Assign.3
	9/30/15	Structured Programming, Chapter 7	
7	10/5/15	Review for Mid-term exam	HW5, P. Assign.4
	10/7/15	Mid-term Exam	
8	10/12/15	ARM Subroutines Stack Preserve Environment	
	10/14/15	Passing Parameters to Subroutine, Chapter 8	Final Project Proposal
9	10/19/15	Interrupts, Chapter 12	HW6, P. Assign. 5
	10/21/15	Interrupts, Chapter 12	
10	10/26/15	Serial Communication Protocols, UART, Chapter 22	HW7, P. Assign 6
	10/28/15	Serial Communication Protocols, I2C, Chapter 22	
11	11/2/15	Analog-to-Digital Converter, Chapter 20	HW8, P. Assign 7
	11/4/15	Digital-to-Analog Converter, Chapter 21	
12	11/9/15	DMA, Chapter 19	HW9, P. Assign 7
	11/11/15	Veterans' day (University closed)	
13	11/16/15	Basics of Low Power Programming	P. Assign. 8
	11/18/15	Mixing C and Assembly, Chapter 10	
14	11/23/15	Fixed Point Numbers, Chapter 11	HW10, P. Assign 9
	11/25/15	General-Purpose Timers, Chapter 15	
15	11/30/14	Project Presentation	Project Report
	12/2/14	Review for Final Exam	
16	12/7/15	Final Exam, 7:15 PM – 9:15 PM, Room EC1115	

Course Outline

Page | 4

Keil uvision IDE:

- Download MDK-ARM version 5 from the following website: <u>https://www.keil.com/download/product/</u>
- Download and install the STML32L1 Keil package

ST Link Driver

• Use the following link to install ST Link Driver http://www.st.com/web/en/catalog/tools/PF258168

STM132L Board:

• STM132L1 Discovery board for programming assignments can be purchased from Mouser:

http://www.mouser.com/ProductDetail/STMicroelectronics/STM32L152C-DISCO/?qs=%2fha2pyFadugzkcJpeFRtYttAbH%252bjmaClNRQUAuPUQW5TWNFRJr5Jvg%3d%3d

Policies:

- Exams and Quizzes: No makeup exams or quizzes offered
- Academic Misconduct: For work submitted, it is expected that each student will submit their own original work. Any evidence of duplication, cheating or plagiarism will result at least a failing grade for the course.
- **Deadlines:** Assignments are due at the beginning of the class period on the date specified. Assignments submitted late (within 1 week) will receive **half credit.**
- Instructor reserves right to change course materials or dates as necessary.

Assignment Submission:

- Assignments must be submitted by email at: tehranifiu@gmail.com
- You can scan, take pictures or send the pdf file for homework assignments.
- For programming assignments take a screen shot of successfully built project and send it. The main program saved as assembly or C file must be also sent.
- The course number, student's name and assignment number must be mentioned in the email subject field. Example:

New Message

tehranifiu@gmail.com

EEL4746 - Joe Smith - HW2 and programming Assignment 1